Roadmap to Learn NLP & LLMs (Beginner to Advanced)
Phase 1: Foundations (Beginner)
1. Prerequisites
- Python Programming (Basic to Intermediate)
- Data types, loops, functions, OOP
- Libraries: NumPy, Pandas, Matplotlib
- Mathematics & Statistics
- Linear Algebra (Vectors, Matrices)
- Probability & Statistics (Bayesβ Theorem, Distributions)
- Calculus (Derivatives, Gradients)
2. Introduction to NLP
- What is NLP?
- Applications (Chatbots, Translation, Sentiment Analysis)
- Text Preprocessing
- Tokenization, Stemming, Lemmatization
- Stopword Removal, Regex Cleaning
- Libraries: NLTK, spaCy, TextBlob
Example: Text Cleaning with Python
import nltk
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
text = "Natural Language Processing is amazing!"
tokens = word_tokenize(text.lower())
clean_tokens = [word for word in tokens if word.isalpha() and word not in stopwords.words('english')]
print(clean_tokens) # Output: ['natural', 'language', 'processing', 'amazing']
Phase 2: Intermediate NLP
3. Feature Engineering for Text
- Bag-of-Words (BoW) & TF-IDF
- Word Embeddings
- Word2Vec (Skip-gram, CBOW)
- GloVe, FastText
- Library: Gensim, Scikit-learn
Example: TF-IDF with Scikit-learn
from sklearn.feature_extraction.text import TfidfVectorizer
corpus = ["NLP is fascinating.", "I love learning NLP."]
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(corpus)
print(vectorizer.get_feature_names_out())
print(X.toarray())
4. Traditional NLP Models
- Naive Bayes, Logistic Regression for Text Classification
- Sequence Models
- Hidden Markov Models (HMM)
- Conditional Random Fields (CRF) for NER
- Sentiment Analysis, Named Entity Recognition (NER), Topic Modeling (LDA)
Example: Sentiment Analysis with NLTK
from nltk.sentiment import SentimentIntensityAnalyzer
sia = SentimentIntensityAnalyzer()
text = "I love NLP, but it's challenging."
print(sia.polarity_scores(text)) # Output: {'neg': 0.0, 'neu': 0.5, 'pos': 0.5, 'compound': 0.34}
Phase 3: Deep Learning for NLP (Advanced)
5. Neural Networks for NLP
- Recurrent Neural Networks (RNNs) & LSTMs
- Seq2Seq Models & Attention Mechanism
- Transformers (Key Concept for LLMs)
Example: LSTM for Text Classification (Keras)
from keras.models import Sequential
from keras.layers import Embedding, LSTM, Dense
model = Sequential([
Embedding(input_dim=10000, output_dim=128),
LSTM(64),
Dense(1, activation='sigmoid')
])
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
6. Transformer Models & BERT
- Attention Mechanism & Self-Attention
- BERT, GPT, T5 Architecture
- Fine-tuning Pre-trained Models (Hugging Face)
Example: BERT for Text Classification
from transformers import BertTokenizer, TFBertForSequenceClassification
import tensorflow as tf
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased')
inputs = tokenizer("NLP is awesome!", return_tensors="tf")
outputs = model(inputs)
print(outputs.logits)
Phase 4: Large Language Models (LLMs)
7. Working with LLMs
- GPT-4, LLaMA, Claude, Mistral
- Prompt Engineering & Few-shot Learning
- Retrieval-Augmented Generation (RAG)
Example: GPT-4 with OpenAI API
import openai
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[{"role": "user", "content": "Explain NLP in simple terms."}]
)
print(response.choices[0].message.content)
8. Fine-tuning & Deploying LLMs
- LoRA, QLoRA for Efficient Fine-tuning
- Deploying LLMs with FastAPI, Gradio
- LangChain & LlamaIndex for AI Agents
Example: Fine-tuning LLaMA with LoRA
from peft import LoraConfig, get_peft_model
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b")
lora_config = LoraConfig(task_type="CAUSAL_LM", r=8, lora_alpha=16, lora_dropout=0.1)
model = get_peft_model(model, lora_config)
Phase 5: Advanced Topics & Research
9. Cutting-Edge NLP & LLM Research
- Multimodal Models (GPT-4V, LLaVA)
- Agentic AI (AutoGPT, BabyAGI)
- Ethics, Bias, and Safety in LLMs
10. Real-World Projects
- Build a Chatbot (RAG-based)
- Document Summarization System
- Custom LLM Fine-tuning for Domain-Specific Tasks
Learning Resources
Topic | Resources |
---|---|
Python Basics | Python Crash Course (Book), W3Schools |
NLP Fundamentals | NLTK Book, spaCy Course |
Deep Learning for NLP | CS224N (Stanford NLP Course) |
Transformers & LLMs | Hugging Face Course, Andrej Karpathyβs YouTube |
LLM Deployment | LangChain Docs, FastAPI Tutorials |
Final Tips
β
Hands-on Projects (Kaggle, Hugging Face)
β
Read Research Papers (ArXiv, Papers With Code)
β
Join NLP Communities (Hugging Face, Reddit NLP)