Limits and Continuity
1. Precise Definition of Limit
Definition:
The limit of a function \( f(x) \) as \( x \) approaches \( c \) is \( L \), written as:
This means that as \( x \) gets arbitrarily close to \( c \), the values of \( f(x) \) approach \( L \).
\( \varepsilon-\delta \) Definition:
For every \( \varepsilon > 0 \), there exists a \( \delta > 0 \) such that if \( 0 < |x - c| < \delta \), then: [ |f(x) - L| < \varepsilon ]
Intuition:
- \( \varepsilon \): Controls how close \( f(x) \) needs to be to \( L \).
- \( \delta \): Controls how close \( x \) needs to be to \( c \).
Example:
Problem:
Prove \( \lim_{{x \to 2}} (3x + 1) = 7 \) using the \( \varepsilon-\delta \) definition.
Solution:
- Given \( f(x) = 3x + 1 \), \( L = 7 \), \( c = 2 \).
-
We want \( |f(x) - L| < \varepsilon \):
\[ |(3x + 1) - 7| = |3x - 6| = 3|x - 2| \] -
To satisfy \( 3|x - 2| < \varepsilon \):
\[ |x - 2| < \frac{\varepsilon}{3} \] -
Choose \( \delta = \frac{\varepsilon}{3} \).
Whenever \( |x - 2| < \delta \), it follows that \( |f(x) - 7| < \varepsilon \).
Python Visualization:
Below is a Python function to visualize the \( \delta-\varepsilon \) relationship for a given function and limit:
import numpy as np
import matplotlib.pyplot as plt
def visualize_limit(f, c, L, epsilon):
x = np.linspace(c - 2, c + 2, 1000)
y = f(x)
plt.figure(figsize=(8, 6))
plt.plot(x, y, label=f"f(x)")
plt.axhline(L, color='red', linestyle='--', label=f"L = {L}")
plt.fill_between(x, L - epsilon, L + epsilon, color='red', alpha=0.2, label=f"ε = {epsilon}")
delta_region = (x > c - epsilon / 2) & (x < c + epsilon / 2)
plt.fill_between(x[delta_region], min(y), max(y), color='blue', alpha=0.2, label=f"δ region")
plt.scatter([c], [L], color='black', label="c")
plt.title(f"Visualization of Limit at x → {c}")
plt.legend()
plt.grid()
plt.xlabel("x")
plt.ylabel("f(x)")
plt.savefig("limit.png")
plt.show()
# Example: Visualize f(x) = 3x + 1, c = 2, L = 7, ε = 1
visualize_limit(lambda x: 3 * x + 1, c=2, L=7, epsilon=1)

2. Continuity
Definition:
A function \( f(x) \) is continuous at a point \( c \) if: 1. \( f(c) \) is defined. 2. \( \lim_{{x \to c}} f(x) \) exists. 3. \( \lim_{{x \to c}} f(x) = f(c) \).
Types of Discontinuity:
- Removable Discontinuity: The limit exists but \( f(c) \) is either undefined or does not match the limit.
- Jump Discontinuity: The left-hand limit \( \lim_{{x \to c^-}} f(x) \) and the right-hand limit \( \lim_{{x \to c^+}} f(x) \) exist but are not equal.
-
Infinite Discontinuity:
\( f(x) \) approaches infinity as \( x \to c \).
Example:
Problem:
Determine whether \( f(x) = \frac{x^2 - 1}{x - 1} \) is continuous at \( x = 1 \).
Solution:
-
Simplify \( f(x) \):
\[ f(x) = \frac{x^2 - 1}{x - 1} = \frac{(x - 1)(x + 1)}{x - 1} = x + 1, \quad x \neq 1 \] -
\( f(1) \) is undefined (discontinuity).
-
The limit exists:
\[ \lim_{{x \to 1}} f(x) = 1 + 1 = 2 \] -
Discontinuity is removable; redefine \( f(1) = 2 \) to make it continuous.
3. Limit at Infinity: Horizontal Asymptotes
Definition:
The limit of \( f(x) \) as \( x \to \infty \) or \( x \to -\infty \) describes the horizontal asymptotes of the function. If:
then \( y = L \) is a horizontal asymptote.
Key Intuition:
At extreme values of \( x \), the function stabilizes around a constant value \( L \).
Examples:
Example 1: Rational Function
\( f(x) = \frac{2x^2 + 3}{x^2 + 1} \)
Solution:
-
Divide numerator and denominator by \( x^2 \):
\[ f(x) = \frac{2 + \frac{3}{x^2}}{1 + \frac{1}{x^2}} \] -
As \( x \to \infty \), \( \frac{3}{x^2} \to 0 \) and \( \frac{1}{x^2} \to 0 \):
\[ \lim_{{x \to \infty}} f(x) = \frac{2 + 0}{1 + 0} = 2 \] -
Horizontal asymptote: \( y = 2 \).
Example 2: Exponential Function
\( f(x) = e^{-x} \)
Solution:
-
As \( x \to \infty \):
\[ e^{-x} \to 0 \] -
Horizontal asymptote: \( y = 0 \).
Python Visualization:
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-10, 10, 1000)
y = (2 * x**2 + 3) / (x**2 + 5)
plt.figure(figsize=(8, 6))
plt.plot(x, y, label="f(x) = (2x^2 + 3) / (x^2 + 5)")
plt.axhline(2, color='red', linestyle='--', label="y = 2 (Horizontal Asymptote)")
plt.title("Horizontal Asymptote")
plt.legend()
plt.grid()
plt.xlabel("x")
plt.ylabel("f(x)")
# plt.savefig("image.png")
plt.show()

This visualization demonstrates the behavior of \( f(x) \) as \( x \to \pm\infty \).