Skip to content

Partial Derivatives and Multiple Integrations

1. Limit and Continuity

Definition

For a multivariable function \( f(x, y) \), the limit as \( (x, y) \to (a, b) \) is:

\[ \lim_{(x, y) \to (a, b)} f(x, y) = L \]

if \( f(x, y) \) approaches \( L \) from all directions.

A function is continuous at \( (a, b) \) if:

  1. \( f(a, b) \) is defined.
  2. \( \lim_{(x, y) \to (a, b)} f(x, y) \) exists.
  3. \( \lim_{(x, y) \to (a, b)} f(x, y) = f(a, b) \).

Real-World Example

Temperature at a location \( f(x, y) \) is continuous if small changes in \( x \) and \( y \) result in small changes in \( f(x, y) \).

Example (Python Code):

import numpy as np
import matplotlib.pyplot as plt

# Example of a continuous function f(x, y) = sin(x) * cos(y)
def f(x, y):
    return np.sin(x) * np.cos(y)

x = np.linspace(-np.pi, np.pi, 100)
y = np.linspace(-np.pi, np.pi, 100)
X, Y = np.meshgrid(x, y)
Z = f(X, Y)

plt.figure(figsize=(8, 6))
plt.contourf(X, Y, Z, cmap='viridis')
plt.colorbar(label='f(x, y)')
plt.title('Continuous Function: f(x, y) = sin(x) * cos(y)')
plt.xlabel('x')
plt.ylabel('y')
plt.show()

2. Partial Derivatives

Definition

The partial derivative of \( f(x, y) \) with respect to \( x \) is:

\[ \frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x + h, y) - f(x, y)}{h} \]

Similarly, with respect to \( y \):

\[ \frac{\partial f}{\partial y} = \lim_{h \to 0} \frac{f(x, y + h) - f(x, y)}{h} \]

Real-World Example

In a heatmap of temperature \( f(x, y) \):

  • \( \frac{\partial f}{\partial x} \): Change in temperature in the east-west direction.
  • \( \frac{\partial f}{\partial y} \): Change in temperature in the north-south direction.

Example (Python Code):

# Compute partial derivatives numerically
def f(x, y):
    return x**2 + y**2

def partial_x(x, y):
    return 2 * x

def partial_y(x, y):
    return 2 * y

x, y = np.meshgrid(np.linspace(-2, 2, 20), np.linspace(-2, 2, 20))
z = f(x, y)
dx = partial_x(x, y)
dy = partial_y(x, y)

plt.quiver(x, y, dx, dy, color='red')
plt.contour(x, y, z, cmap='viridis')
plt.title('Gradient Field of f(x, y) = x^2 + y^2')
plt.xlabel('x')
plt.ylabel('y')
plt.show()

3. Tangent Planes

Definition

The tangent plane to \( z = f(x, y) \) at \( (a, b) \) is:

\[ z - f(a, b) = \frac{\partial f}{\partial x}(a, b)(x - a) + \frac{\partial f}{\partial y}(a, b)(y - b) \]

Real-World Example

In terrain modeling, the tangent plane gives the slope and direction of a hill at a specific point.

Example (Python Code):

# Tangent plane to f(x, y) = x^2 + y^2 at (1, 1)
def tangent_plane(x, y):
    return 2 * (x - 1) + 2 * (y - 1) + 2

x, y = np.meshgrid(np.linspace(0, 2, 20), np.linspace(0, 2, 20))
z = f(x, y)
tz = tangent_plane(x, y)

fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(x, y, z, alpha=0.6, cmap='viridis', label='Surface')
ax.plot_surface(x, y, tz, alpha=0.4, color='red', label='Tangent Plane')
ax.set_title('Tangent Plane to f(x, y) at (1, 1)')
plt.show()

4. Maximum and Minimum Values

Definition

Critical points occur where \( \frac{\partial f}{\partial x} = 0 \) and \( \frac{\partial f}{\partial y} = 0 \).

  • Maximum: \( f(x, y) \) reaches a peak.
  • Minimum: \( f(x, y) \) reaches a trough.
  • Saddle Point: \( f(x, y) \) changes direction.

Example (Python Code):

from scipy.optimize import minimize

# Find critical points of f(x, y) = x^2 + y^2
def f_to_minimize(x):
    return x[0]**2 + x[1]**2

result = minimize(f_to_minimize, [1, 1])
print("Critical Point:", result.x)

5. Multiple Integrals

Overview

Multiple integration extends the concept of single-variable integration to functions of two or more variables. It is used to compute the volume under a surface, areas, or to solve higher-dimensional problems in physics, engineering, and mathematics.

Types of Multiple Integrals:

  1. Double Integral: Integration over a two-dimensional region.
  2. Triple Integral: Integration over a three-dimensional region.

Double Integrals

Definition

A double integral is used to compute the volume under a surface \( z = f(x, y) \) over a two-dimensional region \( R \).

The general form is:

\[ \iint_R f(x, y) \ dA \]

where \( dA \) is the area element (typically \( dx \, dy \) or \( dy \, dx \)).

Example

Evaluate the double integral:

\[ \iint_R (x + y) \ dA \]

where \( R \) is the rectangle defined by \( 0 \leq x \leq 2 \) and \( 0 \leq y \leq 3 \).

Solution:

\[ \iint_R (x + y) \ dA = \int_0^2 \int_0^3 (x + y) \ dy \ dx \]
  1. Integrate with respect to \( y \): \( \int_0^3 (x + y) \ dy = \left[ xy + \frac{y^2}{2} \right]_0^3 = 3x + \frac{9}{2} \)

  2. Integrate with respect to \( x \): \( \int_0^2 \left( 3x + \frac{9}{2} \right) \ dx = \left[ \frac{3x^2}{2} + \frac{9x}{2} \right]_0^2 = \frac{12}{2} + \frac{18}{2} = 15 \)

Thus, the value of the integral is \( 15 \).


Triple Integrals

Definition

A triple integral is used to compute the volume of a region in three-dimensional space or to integrate functions over a three-dimensional region.

The general form is:

\[ \iiint_V f(x, y, z) \ dV \]

where \( dV \) is the volume element (typically \( dx \, dy \, dz \), or any permutation).

Example

Evaluate the triple integral:

\[ \iiint_V xyz \ dV \]

where \( V \) is the cuboid defined by \( 0 \leq x \leq 1 \), \( 0 \leq y \leq 2 \), and \( 0 \leq z \leq 3 \).

Solution:

\[ \iiint_V xyz \ dV = \int_0^1 \int_0^2 \int_0^3 xyz \ dz \ dy \ dx \]
  1. Integrate with respect to \( z \): \( \int_0^3 xyz \ dz = xyz \left[ z \right]_0^3 = 3xyz \)

  2. Integrate with respect to \( y \): \( \int_0^2 3xyz \ dy = 3x \int_0^2 y \ dy = 3x \left[ \frac{y^2}{2} \right]_0^2 = 3x \cdot 2 = 6x \)

  3. Integrate with respect to \( x \): \( \int_0^1 6x \ dx = \left[ 3x^2 \right]_0^1 = 3 \)

Thus, the value of the integral is \( 3 \).


Applications of Multiple Integration

  1. Volume Calculation: Computing the volume under a surface or within a region.
  2. Mass and Density: Finding mass when density varies over a region.
  3. Centroids and Moments of Inertia: Used in mechanics and structural engineering.

Practice Problems

  1. Evaluate:

    \[ \iint_R x^2y \ dA, \quad R = [0, 1] \times [0, 2]. \]
  2. Compute:

    \[ \iiint_V x + y + z \ dV, \quad V: 0 \leq x \leq 1, 0 \leq y \leq 1, 0 \leq z \leq 2. \]
  3. Solve for the volume of the region bounded by \( x^2 + y^2 \leq 1 \) and \( 0 \leq z \leq 3 \).


Example (Python Code):

from scipy.integrate import dblquad

# Double integral of f(x, y) = x^2 + y^2 over x: [0, 1], y: [0, 1]
def integrand(x, y):
    return x**2 + y**2

result, _ = dblquad(integrand, 0, 1, lambda x: 0, lambda x: 1)
print("Double Integral Result:", result)

For further reading, check the documentation or consult advanced calculus textbooks.