Roadmap
๐ฐ Phase 1: Foundations of Time Series โ Topics:
What is a Time Series?
Components of Time Series:
Trend
Seasonality
Cyclicity
Noise (residuals)
Time Series vs Cross-Sectional Data
Stationarity & White Noise
โ Math/Stats:
Basic statistics: mean, median, variance
Covariance, autocorrelation
Lag and difference operations
โ Tools:
Python, Jupyter Notebooks
Libraries: pandas, matplotlib, seaborn
โ Practice:
import pandas as pd
import matplotlib.pyplot as plt
ts = pd.read_csv("air_passengers.csv", parse_dates=['Month'], index_col='Month')
ts.plot()
plt.show()
๐ Phase 2: Exploratory Time Series Analysis (TSA) โ Topics:
Plotting time series data
Rolling statistics (moving average, std)
ACF (Autocorrelation Function) & PACF (Partial ACF)
Seasonal decomposition (additive vs multiplicative)
โ Tools:
statsmodels.tsa, scipy.signal
โ Code Sample:
from statsmodels.tsa.seasonal import seasonal_decompose
result = seasonal_decompose(ts, model='multiplicative')
result.plot()
Handling missing timestamps
Resampling (up-sampling, down-sampling)
Lag features, rolling features
Differencing to remove trend/seasonality
Stationarity check (ADF/KPSS test)
โ Code:
from statsmodels.tsa.stattools import adfuller
adf_result = adfuller(ts['#Passengers'])
print(f'p-value: {adf_result[1]}')
AR (AutoRegressive)
MA (Moving Average)
ARMA, ARIMA (AutoRegressive Integrated Moving Average)
SARIMA / SARIMAX (seasonal ARIMA + exogenous vars)
Exponential Smoothing (ETS)
โ Concepts:
Model Order Selection (AIC/BIC)
Model Diagnostics
Forecasting & Confidence Intervals
โ Tools:
statsmodels.tsa.arima_model, pmdarima
โ Code:
from pmdarima import auto_arima
model = auto_arima(ts, seasonal=True, m=12)
model.summary()
Train/Test split in time series (walk-forward validation)
Feature engineering (lag/rolling windows)
ML Models: Linear Regression, Random Forest, XGBoost
Multi-step forecasting
โ Tools:
scikit-learn, xgboost, lightgbm
โ Code:
from sklearn.ensemble import RandomForestRegressor
# Create lag features
df['lag1'] = df['value'].shift(1)
df.dropna(inplace=True)
model = RandomForestRegressor()
model.fit(df[['lag1']], df['value'])
RNN
LSTM (Long Short-Term Memory)
GRU (Gated Recurrent Unit)
1D CNNs for time series
Transformer-based models (e.g., Time2Vec, Temporal Fusion Transformer)
โ Tools:
TensorFlow/Keras, PyTorch
โ Code Sample:
from keras.models import Sequential
from keras.layers import LSTM, Dense
model = Sequential()
model.add(LSTM(50, input_shape=(X_train.shape[1], X_train.shape[2])))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')
model.fit(X_train, y_train, epochs=10)
MAE, RMSE, MAPE
Cross-validation for time series (e.g., TimeSeriesSplit)
Visualize forecast vs actual
Prediction intervals
โ Code:
from sklearn.metrics import mean_absolute_error
mae = mean_absolute_error(y_true, y_pred)
print(f'Mean Absolute Error: {mae}')
Anomaly Detection in Time Series
Time Series Clustering
Multivariate Time Series
Exogenous variables (SARIMAX, VAR)
Forecasting with missing data
Probabilistic Forecasting
โ Libraries:
Facebook Prophet
NeuralProphet
darts (uniting classical + DL models)
GluonTS, Kats, Nixtla
๐ Phase 9: Project Ideas
Stock Price Forecasting (with LSTM & ARIMA)
Electricity Load Forecasting
Sales Forecasting for E-Commerce
Weather Time Series Analysis
Air Quality Index (AQI) Forecasting
IoT Sensor Time Series Monitoring
๐ Recommended Resources Books:
"Practical Time Series Forecasting" โ Galit Shmueli
"Time Series Analysis and Forecasting" โ Brockwell & Davis
"Deep Learning for Time Series Forecasting" โ Jason Brownlee
Courses:
Coursera โ Time Series Forecasting
Udemy โ Python for Time Series Data Analysis
fast.ai Time Series Course
๐ ๏ธ Final Tools Mastery Checklist Tool Use pandas Time Series handling matplotlib/seaborn Plotting statsmodels ARIMA, SARIMA pmdarima Auto model selection scikit-learn ML pipelines keras/pytorch Deep learning darts, prophet High-level time series models